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1.0 Abstract 

Realtime strategy (RTS) games are a sub-genre of strategy games which are characterised by the fact 

that all decisions and movements happen in real-time, unlike their turn-based counterparts. 

Calculating many decisions at runtime however can make it difficult to engineer challenging AI. 

Therefore, this paper investigated the different techniques and development processes used by the 

games industry and academia, to determine which ones are the most optimal for creating more 

challenging AI opponents within RTS games. These methods were tested in a brand new RTS 

framework developed in Unreal Engine 5, utilising C++ for greater performance. This framework 

included both the core mechanics of an RTS game, but also a basic AI structured according to 

practices researched in the literature of this field. The methods researched were then implemented 

into the decision-making process of this basic AI. These were then tested against human participants 

to see from both data collected on match statistics, as well as participant opinion, on whether or not 

the AI they played was challenging. This paper found that methods such as dynamic difficulty scaling 

and the Lanchester combat prediction algorithm were deemed more challenging by participants and 

supporting data, rather than methods like allowing the AI to cheat. 
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2.0 Introduction  

Artificial Intelligence (AI) is a major building block of the strategy game genre, this is because most 

titles have single-player modes, which requires a form of computer opponent for players to compete 

against. 

In turn-based strategy games such as Sid Meier’s Civilisation VI (Take-Two Interactive, 2016), players 

– both human and computer – must manage resources, construct units and plan attacks on their 

opponents. All these actions make up a players turn and after making a turn, the player progresses to 

the next turn by pressing a button. There is a loading buffer that takes a few seconds before letting 

the player take their next turn, the buffer duration varies depending on the number of AI factions in 

game. This buffer allows the AI ample time to evaluate the game state and make moves based on it. 

In turn this can lead to more challenging experiences as both players and their computer opponents 

can properly plan moves. 

By stark contrast however, in real-time strategy games there is no luxury for human or computer 

players on having ample time to contemplate their moves. This is because everything runs in real-

time at a constant refresh rate between 30-60 frames per second, depending on the graphical 

intensity of the game. Players must simultaneously deal with multiple tasks such as collecting 

resources, building units and managing potentially several battles on different front lines. This leads 

to the AI also being more complex than their turn-based counterparts as the AI must also be able to 

handle all these tasks and adapt to the constant changes the real-time setting will cause throughout a 

match. 

The problem that will be investigated in this paper is how to make AI within RTS games more 

challenging. As previously mentioned, turn based strategy features a loading buffer allowing the AI 

ample time to make a move and think ahead like in Chess – a game where AI can already beat 

humans, such was the case when world champion Garry Kasparov lost to the chess engine deep blue 

in 1997 (Hoekenga, 2007). RTS games however do not have this luxury, so a large amount of 

computing power is needed to determine strategies at runtime. The larger the scale of a game, the 

more computing power is required to make decisions. An example on how large strategy games can 

be is Stellaris (Paradox Interactive, 2016). In this title a player must manage a galactic scale faction 

that has to colonise planets and systems to expand their territory and resource pool. As well as this, 

they must also build large military and civilian fleets to fight wars and construct infrastructure 

respectively. The matches taking place in an entire galaxy with up to 30 AI empires spread across up 

to 1000-star systems, which can take up a lot of processing power. As a result, to make their 

opponents appear more challenging, without developing more adaptive and potentially processer 

heavy AI; the game will either give the player or AI economic and research bonuses to help them 

progress quicker.  

This approach does make opponents more challenging, as the AI will always have a larger starting 

force due to economic bonuses, but through resource optimisation, a skilled player can catch up and 

nullify these handicaps. The AI essentially loses its lead and presents little challenge past this point, 

as the strategies utilised are the same as at lower difficulties. Therefore, this paper will look into other 

ways to create a more dynamic and challenging AI opponent for players that provide a challenge 

throughout the entire duration of a game, not just the early to mid-game. 
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3.0 Aims and Objectives 

The aim of this paper is to investigate what techniques and development processes can be utilised to 

develop more challenging AI opponents for players to compete against within RTS games. This will be 

achieved by studying techniques used by both the games industry and academics who specialize in 

this field of research. This research will culminate in an RTS prototype, that will feature AI systems 

developed using a combination of techniques. This prototype will then be play tested to see which 

systems were deemed the most challenging. Three main research questions will be considered when 

conducting this study: 

• RQ1: What measures are used to measure the difficulty of AI in RTS games? Is it an AI that 

will always try to be as difficult as possible for the player to defeat? Or is it an AI that will 

present the player difficulty during a match but allow itself to be overcome if the player is 

skilled enough? 

 

• RQ2: What are the optimal design philosophies for designing RTS AI? For instance, how 

should an RTS AI be structured and how can structuring affect the level of challenge an AI 

will pose to a player? 

 

• RQ3: What are the optimal algorithms utilised for combat prediction, that are used to create a 

challenging AI system? Specific areas that will be investigated regarding this research 

question include: 

o Predictions Algorithms  

o Counter systems 
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4.0 Literature Review 

4.1 Tactics for RTS games 

4.1.1 The building blocks of RTS games 

RTS games are a real-time war simulation where players select a faction and compete against other 

factions, which controlled either by other players in a multiplayer setting, or more typically AI 

controllers in single player. A faction in the context of RTS games is a controllable entity that has their 

own unique appearance for units and buildings. Some factions may also have unique units and 

mechanics which gives every faction their own unique strategy when playing. Despite these 

advantages however, developers must ensure that all the factions are balanced to ensure a fair game. 

The main factor of importance in a real-time strategy game is the economy and resource 

management (Oluwafemi J, Akinde, 2014). Factions must be able to gather resources either passively 

through capturing resource structures such as in the skirmish mode of Star Wars: Empire at War 

(Petroglyph Games, 2006) or by harvesting resources utilising workers such as in Age of Empires 

(Ensemble Studios, 1997). These resources can be used for a variety of factors such as upgrading 

their technology, resulting in stronger units and defences, as well as the initial construction of those 

units and buildings. 

The most common win condition of RTS games is to defeat the opposing factions within a game. 

Therefore, the battle system is a critical part of the infrastructure of RTS games which allows factions 

to attack each other’s military units and buildings. As a result, RTS games have a wide variety of 

military units (Robertson, Watson, 2014) that factions can utilise, as the more potential unit types 

that are on offer, the greater the combinations of units that can be used to achieve a balanced 

fighting force (Oluwafemi J, Akinde, 2014). If all the units within an RTS game are balanced it will 

prevent the use of rush tactics that only involve one unit. 

When it comes to the user interface (UI) design of an RTS game, they can be simple or extremely 

complex. Simpler user interfaces are more effective as they convey the information the player needs 

to know in a clear and concise manner. This makes it easier for the player to understand and makes 

the game less of a challenge as whole. Complex user interfaces are required for RTS games with a lot 

of game mechanics, as simpler user interfaces cannot handle all the information a player requires, 

however, developers run the risk of confusing the player and making the game have a steeper 

learning curve. 

4.1.2 The role of an AI opponent 

In real-time strategy games that possess a single player mode, the human player requires other 

factions to fight against. In the absence of other human players to control these factions, as is the 

case in multiplayer modes, an AI controller will step in and take control of an enemy faction. They will 

then attempt to play the role of a human player and order their units to gather resources and attack 

the players’ forces with the aim of winning. However, winning is not the true goal of an AI opponent, 

as according to Davis’ (Davis, 1999) first law of computer game AI: ‘The goal of any AI is to lose the 

game.’ 

The reasoning behind this law is that attempts to make perfect AI opponents, that use all the optimal 

tactics, would be undesirable (Davis, 1999). This is because, despite players wanting a more 

challenging opponent, they would not want to lose constantly to one; rather they appreciate the 

challenge of an opponent who may defeat them a couple of times, but eventually they will be able to 

overcome the AI. This rewards the player with a great sense of accomplishment in the end, as they 

have beaten a challenging foe. So overall the role of an AI opponent within an RTS game is to 

challenge the player by creating an exciting ebb and flow of power, keeping the player engaged and 
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threatened throughout the course of the game, but in the end, if the player is skilled enough, will lose 

to them.  

4.1.3 Strategies used in strategy games 

In RTS games, both the player and AI can utilise various strategies to claim victory. Therefore, in 

every strategy game, there are three broad categories of playstyles that can be used. The first is the 

“Boom” strategy (referred to as economy building in this paper), this refers to prioritising faction 

upgrades and building up the economy of the faction in order to get the most powerful units first 

(Bycer, 2025). 

The second is rushing or a rush-attack. This is a strategy that results in crafting an army with a large 

number of low-level units and attacking your opponent as soon as possible. The aim is to destroy key 

buildings before they are able to craft powerful units to defend (Li, 2008). This strategy if used 

correctly, can cripple or even defeat an opponent in the early game, although the user can be worse 

off if the attack is successfully defended. 

The last common strategy is turtling, this can be used alongside economy building as the principle of 

turtling is to use a slow and cautious playstyle and focus on heavily defending a particular area 

(Deriglazov, 2018). In the context of RTS games, turtling is when one player focuses on defense only 

to shut down any incoming attack, with the goal to survive long enough to get more powerful units 

than their opponent to launch a counterattack. 

These three exist within a rock, paper, scissors dynamic, as rush can be used to prevent people 

building their economy, economy building can be used to gain enough resources to overpower turtles, 

and turtling can be used to fend off rush attacks. 

4.2 Structuring of AI systems in RTS games 

4.2.1 Basic Structuring 

AI systems within RTS games are structured by breaking the AI down into different managers with 

each one being responsible for a task a faction would be required to do (Scott, 2002). The number of 

managers utilised can be altered dependent on the game’s requirements, however this approach 

always requires a civilisation manager. This manager is responsible for coordination between the 

lower-level managers and controls when a civilisation is required to upgrade their technology. Scott 

also describes 5 more lower-level managers when using this structure type: 

• The unit manager controls unit recruitment and can have the option to keep track of the 

players unit count and try to train an equal number of units to the player for balanced 

combat. 

• The build manager, which is responsible for the placement of structures in a game, 

coordinates with the unit manager and can be sent requests to build unit training buildings, 

so the unit manager can construct units. This module also handles terrain analysis when 

placing buildings as well, since buildings will have certain requirements on where they must 

be placed. 

• The resource manager, which is responsible for tasking workers to gather resources in 

response to orders from both the unit and building managers. 

• The research manager which controls the upgrading of the civilisation’s technology tree. 

Upgrades are selected based on cost, effectiveness and the current technology level of the 

player. 

• Lastly the combat manager which is responsible for directing military units to attack enemy 

civilisations. It coordinates with the unit manager to request more units, as well as keeping 

track of offensive and defensive duties via individual personnel managers. 



8 
 

 

4.2.2 Behaviour Trees and State Machines 

As well as breaking down the AI into managers controlling different tasks, the code within these 

managers should also be discussed. A common approach to structuring any sort of AI system whether 

that be a non-player character (NPC) or an overarching AI, will be using either state machines or 

behaviour trees. Both methods offer a way for agents to make decisions autonomously depending on 

certain conditions or events, which is something the previously discussed manager system would rely 

on, due to their communication between each other. 

A finite state machine (FSM) is a basic mathematical model of computation that consists of a set of 

states along with transitions and events to arbitrarily swap between said states. These were widely 

used in autonomous agents before the creation of behaviour trees (Colledanchise, Ogren, 2018). They 

feature a common structure and are easy to implement and understand. The downside with FSMs, 

however, is they lack modularity as adding and removing states gives rise to the issue of re-

evaluating the entire process.  

Behaviour trees were developed by the computer games industry as a tool to increase the modularity 

in control structures NPCs. Before their introduction, FSMs used to be the norm for NPC controls. 

Behaviour trees are a directed rooted tree comprised of root and leaf nodes, operations start at the 

root node and traverse through leaf nodes depending on a certain condition that needs to be met 

(Colledanchise, Ogren, 2018). 

4.2.3 The Dark Reign Model 

The method of breaking down an RTS AI into different modules is standard practice, at least in 

relevance to the games industry. Another example that uses this concept is The Dark Reign Model 

(Davis, 1999), a model used to develop strategy games by the games company Blizzard. It breaks 

down an AI into three main modules: an analysis module, resource allocation and high-level AI 

module. The analysis module breaks down strategic goals and ranks them in order of how high a 

priority a particular goal is, whereas the resource allocation module takes the goals from the analysis 

module and allocates troops to the goals. The high-level module changes the parameters that the 

former two modules use, dependent on the state of the game or specific scripted events. This 

approach to tackling the structure uses a lot less modules than the basic structure described 

previously, however utilises a way to change parameters in the high-level module to easily change 

how an AI may behave. Using an approach that allows easy modification of a systems behaviour will 

allow a developer to better tweak their designs based on feedback to create a more challenging 

opponent. 

4.2.4 Data-Driven Design 

Another approach of structuring an RTS AI, is by using data-driven design for the decision-making 

processes rather than behaviour trees or state-machines. This involves giving each control module a 

set of actions to choose from. The way the AI determines which one to choose, is by choosing the 

highest weighted action out of the selection. This approach is utilised by the AI systems in Stellaris 

(Bari, 2017). By utilising this approach, it cut down the amount of work the Stellaris programmers had 

to do and allows better balancing changes as the AI can be completely adjusted outside of the 

codebase. The way weights are determined are by triggers that are enacted either at the start of the 

game, after the AI has been randomly generated, or by in-game events. The weights are selected by 

either picking the highest weight outright or weighted randomisation. Weighted randomisation works 

by having a select number of weights, the weights are summed to get a total value, then each weight 

is converted to be a percentage value of the total. This percentage represents the likelihood of that 

weight being chosen. This approach to creating RTS AI can be useful especially in the context of 
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adding new mechanics to an expanding game, as it just involves adding new weights when AI new 

mechanics are created. It is also useful performance wise, as there is no tree-traversal through 

behaviour trees that needs to be done; so more graphically demanding games may favour from this 

approach to improve performance. 

 

4.3 Methods to create more challenging AI 

When it comes to creating AI opponents that are more challenging for a player to play against, both 

the games industry and academics have different approaches to tackling this problem. One main 

factor that contributes to this difference is the constant increase in graphical quality in newly released 

games. As graphically impressive games sell better (Buro, Furtak, 2004), more processing power is 

utilised for rendering rather than computing for AI calculations. Therefore, to give players who want a 

more challenging experience in RTS games, the industry will use shortcuts to get this result. Since the 

research side of the field however spend their time creating AI for older games like StarCraft (Blizzard 

Entertainment, 1998) or using simple simulations in software such as the Open Real-Time Strategy 

engine (ORTS); their methods result in more challenging AI without utilizing shortcuts. 

Additionally, there is little demand for new AI techniques in the games industry. Current techniques 

are not viewed as an obstacle to create an AI that is challenging and fun to play against (Robertson, 

Watson, 2014). Studios are usually under severe time constraints when developing, so there is little 

incentive to create and test new AI methods that could result in more challenging opponents, as they 

are costly to create (Buro, Furtak, 2004). Considering this fact, it is no surprise that studios use the 

same techniques and resort to shortcut methods like cheating to enhance the difficulty of their games 

against AI opponents. 
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4.4 Methods utilised by the game industry 

4.4.1 Cheating 

Allowing their AI opponents to cheat is a method that is widespread throughout industry made RTS 

games (Robertson, Watson, 2014). This cheating however can be in a variety of forms that would 

allow an AI opponent to have an edge over the human player. 

4.4.2 Cheating the fog of war 

One strategy used in turn-based and real-time strategy games alike, is allowing AI opponents to see 

through the fog of war. The fog of war is a visibility limiter that prevents human players from seeing 

the whole map at once – which would give a great tactical advantage to any faction, whether human 

or AI. Due to the fog of war, human players can only see areas of the map properly if they have a 

unit or building stationed there. The number of tiles visible around a given building or unit is 

dependent on the individual’s visibility range, which makes it particularly difficult to determine an 

opponent’s strategy due to the incomplete information about an opponent’s actions (Kabanza et al, 

2010). 

Cheating this data by removing the fog of war for AI opponents, can make them more challenging as 

they can watch their opponent’s faction move and station forces in certain areas, therefore allowing 

the AI to launch a surprise attack on their opponent. Alternatively, they could see when the enemy 

faction is sending an army to attack and mount a defence to fend them off. While this certainly would 

make the AI more challenging, developers must be careful with this approach as it is difficult to hide 

from human players. Therefore, if the cheating is obvious the game will lose its fun factor (Davis, 

1999). 

Even though the fog of war is usually ignored by AI opponents in strategy games, it is also done for 

performance reasons. When dealing with AI and a fog of war, a developer would have to code in a 

memory system to the AI, so it can remember where it saw units before they disappeared into the fog 

and predict where they might end up if trying to attack them. This is a problem the developers of the 

Civilisation franchise had (Johnson, 2008), and it was decided to let the AI have information cheats 

and limit the amount they can use rather than code an AI compatible with the fog of war. This is 

because it would be too resource intensive and would affect game performance. So, allowing the AI 

to have information cheats by ignoring the fog of war can be an effective method of increasing RTS 

AI opponent difficulty. However, the amount of information an AI is allowed to gain must be limited to 

avoid it being too obvious and ruining the ‘fun’ a player may experience. 

4.4.3 Cheating the economy 

Another method of cheating used in strategy games, is cheating the economy of an AI opponent. In 

games such as the civilisation franchise, to increase the difficulty for the human player, the main thing 

that is done is reducing the cost of everything for the AI. With the hardest difficulty in the game 

Civilisation IV (Firaxis, 2005) being Deity, which gives every AI faction a 40% reduction in prices 

across the board (Johnson, 2008). This increases the difficulty for the human player as they must deal 

with AI opponents that will most of the time, have more units and higher technology than them. It is 

still possible to win through clever strategies but when one’s opponents have armies twice the size of 

one’s own, it is more of a challenge. 

Aother clear example of a game that uses economic cheating is Stellaris (Paradox Development 

Studio, 2016). Rather than reduce the cost of every item however, the difficulty increase instead 

comes from maintenance costs and boosted resource production. In the game depending on how 

large your navy is, affects how much upkeep you pay – so large fleets that take up your entire naval 

capacity can be difficult to achieve without a good resource income. On its hardest difficulty – grand 

admiral – the AI opponents have their upkeep reduced by 40%. As well as this, resources generated 
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from colony populations are increased by 75% (Paradox Development Studio, 2016). These egregious 

bonuses will in the end allow the AI to not only have larger fleets than the human player but also be 

able to replenish them quickly with large resource pools. Once again, this does make the AI much 

more challenging, but it reduces the amount of viable tactics that can be used by the human player 

so can make it less fun since the cheating is so blatant (Davis, 1999). 

4.4.4 Data-Driven Design 

Although this topic was discussed in section 4.2, it will briefly be considered about in the context of 

how data-driven design can make more challenging AI opponents. In Stellaris, AI opponents have 

different traits that are randomly generated depending on what weights each trait has in the 

generation process. (Bari, 2017). These traits will alter the behaviour of the AI and can make your 

game more challenging as a result without adjusting the difficulty. For example, if the first AI faction 

the human player meets is a machine empire that has the trait determined exterminator (Paradox 

Development Studio, 2017), they will declare war immediately. This is because that trait will make the 

AI want to declare war and purge any faction that is made up of organic lifeforms. As a result, these 

randomised traits can make the game a lot more difficult if the human player start is next to a faction 

likely to declare an early war due to xenophobic ideology. 

 

4.5 Methods utilised by academia 

In terms of the research of improving RTS AI, there are many more methods that have been 

developed to create a more challenging opponent for the player. The testbeds that are used by the 

following methods are the RTS game StarCraft and simple RTS simulations using the Open Real-Time 

Strategy engine (Buro, 2003), referred to in this paper as the ORTS. The ORTS is an open-source 

real-time strategy game engine developed by the university of Alberta. It has an extensive scripting 

system that supports many different types of games. (Hagelbäck, Johansson, 2009). 

4.5.1 Dynamic Difficulty Scaling  

Although this is a concept utilised by the games industry under the term dynamic difficulty adjustment 

(DDA) and is used in a variety of titles, with the Crash Bandicoot series of games (Naughty Dog, 

1996) being some the first to use it. However, with 84 research papers published between 2009 and 

2018 (Zohaib, 2018), it is a field well explored by academics. Hence the placement of it within this 

section. 

Dynamic difficulty scaling means that the difficulty of the game is adjusted during the game to suit 

the skills of the human player (Hagelbäck, Johansson, 2009). The purpose of this is to give the 

human player consistent challenge throughout the game, as usually their skill increases the more they 

play. This is opposed to static difficulty which is set by the player at the start of the game. 

A further development on this concept is called: Rapidly Adaptive Game AI. This was an approach 

where the difficulty in the RTS game engine Spring (Spring Engine, 2007). is adapted at runtime 

utilising observations of the current game state to predict the likely outcome of a given game (Bakkes 

et al, 2008). 
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Figure 1: Equation used to determine the AI difficulty (Hagelbäck, Johansson, 2009) 

The adaptive difficulty algorithm utilised by Hagelbäck and Johansson (Hagelbäck, Johansson, 2009) 

works by evaluating a score to determine how beatable an AI faction should be. This algorithm works 

by evaluating the relative strength of both the human and AI factions by utilizing the formula in figure 

1 within a for loop to determine the total combined health of all units within a faction. 

The difference in the unit health percentage of each unit from each faction is found and determines 

the evaluation score. A positive score means the human player is in the lead, whilst a negative means 

the AI has the higher unit strength. The aimScore is the value of strength the bot aims for, which is 

set to 0, so the aim is that both sides possess equal unit strength. A higher positive value for the 

aimScore however, will tell the bot to aim to always let the human player have a slight lead. Difficulty 

is determined therefore by the value of s, the higher the value of s is between 0 and 1, the more 

difficult the AI becomes. 

Although the results from the study measured enjoyment and fun the test subjects experienced when 

combating the AI factions, they found that the AI with an aim-Score of 0.4 to start with that had the 

adaptive difficulty scaling functionality was the most fun to play against. This approach is a good way 

to develop challenging AI opponents that build up their difficulty as the game progresses. That way, 

the human player faces a constant challenge throughout the game and not just until they overpower 

the AI, such is the case in games with static difficulty. 

4.5.2 The Lanchester Model 

It is challenging for AI opponents to estimate combat outcomes of a battle accurately, attempting to 

do so by running simulations is a popular method but is very resource heavy. The Lanchester Model is 

an outcome evaluation model, based on Lanchester’s attrition law (Lanchester, 1916), which takes 

into consideration forces made up of different unit types and the fact that units can enter a battle 

with any percentage of their maximum health remaining (Stanescu et al, 2017). 

For modern or futuristic themed RTS games, most units are ranged or can target multiple enemies at 

once, as a result this model utilises Lanchester’s Law of Modern Warfare, as this law is intended to 

apply to ranged combat, since it quantifies the value of the advantage of having a larger army. This 

law does have nothing to do with weapons range however, rather the rate at which new targets can 

be acquired, since ranged weapons can engage targets as fast as they can shoot and kill them. The 

aim of using this law is to, before engaging in combat, determine the army sizes and calculate the 

victorious faction and what the remaining army size of the victorious faction will be.   
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However, most RTS games feature large armies comprised of a mix of different unit types, all with 

different values for their health and damage output, that must be factored into the prediction 

equation. Suppose an army has two different unit types, referred to as G1 and G2 with effectiveness 

values of g1 and g2. To calculate the effectiveness of the mixed unit army, an equation must be used 

as seen in figure 2 that takes in the into account the total count and effectiveness of each portion of 

the army, divided by the total army size (Mackay, 2006). 

 

Figure 2: Equation to calculate a mixed unit army's strength (Mackay, 2006) 

To determine the effectiveness of a single unit, an evaluation of their strength is needed for each unit 

involved. These can be determined statically or through machine learning simulations. One method to 

determine a unit’s strength without machine learning however, is an equation considering unit cost 

and health attributes, as seen in figure 3 where α represents unit strength.  

 

Figure 3: Equation to find unit strength (Stanescu et al, 2017). 

This approach can work but it lacks any attributes on a unit’s attacking strength, the amount of 

damage per second a unit can inflict on an enemy target, and any defence modifiers a unit may 

possess. For example, some strategy games utilise armour values on their units which means any 

incoming damage is reduced by a certain percentage. Learning a unit’s strength values through 

logistic regression is the other method tested, as it can use data from hundreds of battle simulations 

to determine how effective a unit is in a combat situation against different units. 

Testing of this model was undertaken utilising UAlbertaBot – an open-source StarCraft AI (Churchill, 

2013) – which runs combat simulations to decide if it should attack the enemy, based on if a win is 

predicted with the current units possessed. A simulation call in this procedure was replaced with a 

Lanchester model-based prediction and tested against the 6 top bots from the 2014 AIIDE StarCraft 

AI tournament, with 200 matches being played against each bot per tournament. Three tournaments 

were played in total, with the first using the UAlbertaBot default settings, the second using statically 

determined strength values and the third using learned values. 

The average win rate of the default settings was 60%, using statically determined values it increased 

the win rate to 63.9% and the learned values had an average win rate of 69.7% (Stanescu et al, 

2017). These results show the Lanchester model could be a viable alternative for combat prediction 

algorithms already used in RTS games, since the data conveys a stable increase in win rates. Leading 

to a potentially more challenging AI for human players to face, since the AI can effectively determine 

the optimal times to attack or retreat based upon the current game state, a feature some mainstream 

RTS games lack. 
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4.5.3 Monte Carlo Tree Search  

One challenge faced when creating AI for modern strategy games, is dealing with the complexity of 

the game itself. With many potential moves that can be made, especially in the RTS genre when 

these must be performed in real-time. AI programmers can be faced with issues when trying to 

encode the way an AI chooses which action to perform. 

Utilising search techniques present an interesting solution as it allows an AI to cycle through possible 

moves and perform the one deemed best, dependent on the current game-state. Search techniques 

like minimax iterate over all possible moves, evaluating the possible result of each, then returning the 

move deemed best. Unfortunately, these techniques do not work in strategy games, especially RTS 

games, as there are too many moves to explore within a reasonable time frame (Roelofs, 2017). 

One search technique can be utilised however, due to its capability of handling complex amounts of 

data, this being the Monte-Carlo Tree Search (MCTS). MCTS relies on an intelligent tree search that 

balances exploration and exploitation. It performs random sampling in the form of simulations, then 

stores statistics of actions to create better educated choices in each iteration (Świechowski et al, 

2023) 

Each iteration of an MCTS process contains four phases – as seen in figure 4 – these are: selection, 

expansion, simulation and finally backpropagation. In the selection phase, while the state is found in 

the tree, the next action is chosen according to stored statistics in a way that balances between 

exploitation and exploration. In the expansion phase, when the game reaches the first state that 

cannot be found within the tree, the state is added as a new node. Therefore, adding a new node for 

each simulated game. In the simulation phase, actions for the rest of the game are selected at 

random; however, the weighting of actions does impact the level of play as if all actions are equally 

weighted, strategies will be suboptimal. Lastly, at the end of the simulated game, the 

backpropagation phase occurs. This updates each tree node that was traversed during the simulation 

and the visit counts are increased and win/loss ratio is modified according to the outcome (Chaslot et 

al, 2008).  

 

Figure 4: The Monte Carlo Tree Search Algorithm (Chaslot et al, 2008) 

Despite MCTS being a better suited search technique for strategy games, complexity still presents 

issues for the algorithm; paired with the fact that it also struggles with problems that have a very 

narrow path of victory and success, makes it poor at tactical decision making (Roelofs, 2017). 
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Roelofs (Roelofs, 2017) found that these pitfalls can be rectified however with adjustments at each 

phase of MCTS, which led to an AI that players found more challenging as a result. During the 

expansion phase, by dividing moves into actions, MCTS can understand that move B, which is a slight 

variation of move A – a good move explored earlier – may be a good move as well. This improves 

performance also as instead of expanding over all possible moves at each expansion step, a certain 

action is selected within the current move and expand into the actions defined in its action set.  

In the simulation phase, complexity can ruin performance. Building an abstraction of the conflict that 

needs to be simulated by defining a function that, given a setup, calculates a loss or victory, saves 

time in the simulation phase and speeds up the rate an AI can calculate good move. 

Within the backpropagation phase, since MCTS has a poor track record for tactical decision making 

(Roelofs, 2017), utilising an evaluation function that severely punishes the AI for losses will result in 

MCTS displaying a paranoid behaviour as it will only select nodes that give the enemy little to no 

chance of winning. It also allows MCTS to move away from nodes that lead to negative reinforcement 

and allow it to explore nodes that have never encountered a loss, which may be moves not tried yet. 

This improves the tactical decision making of MCTS and can lead to a more challenging AI opponent 

as a result. Finally, the optimisation used to improve the selection phase, is an optimised variation of 

the insertion sort algorithm to cache the rank of each node and store which node can be selected 

next. This improves performance as the rank of each node does not need to be repeatedly 

recomputed. 

In short, MCTS proves to be a useful search technique for games with larger data volumes that need 

to be analysed, so by using the optimisations presented by Roelofs (Roelofs, 2017) to increase 

performance of MCTS even more, whilst making up for the poor tactical decision making MCTS tends 

to have, results in an effective method to program challenging AI opponents. 

4.5.4 Fuzzy Case Based Reasoning 

Another approach to developing challenging AI opponents is with the use of Case-based reasoning 

(CBR). CBR is an approach to problem-solving and learning that can utilise knowledge from previously 

experienced situations. It is a concept inspired by the human skill to solve problems by generalising 

over previous observations in a restricted problem domain (Cadena, Garrido, 2011). An evolution of 

this concept is the combination of Fuzzy sets and Case-based reasoning (FCBR), with the Fuzzy set 

theory being a powerful method for mapping vague inputs to a precise output using linguistic rules. 

Since the real-world information is vague and partially true, it creates an environment that is fuzzy 

(Surucu et al, 2023).  

A fuzzy set is the use of classical set theory with fuzzy logic applied to it. In classical set theory, a 

membership function is used to determine whether an object belongs to a set or not by assigning it a 

value, which is either 1 it belongs to the set, or 0, it does not. Using fuzzy logic however, the idea is 

to associate a number with each object indicating the degree to which it belongs to a set, rather than 

the typical Boolean value of classic set theory (Kamble, Rewaskar, 2020). 

This combination of Fuzzy sets and Case-based reasoning was utilised to manage the tactical 

reasoning component of a StarCraft AI bot, as well as using CBR for managing the strategic reasoning 

of the bot. FCBR simplifies the process of knowledge representation, whilst enabling the knowledge 

acquisition practice using a case base. Using linguistic variables within the case base significantly 

reduces the large number of actions and objects that an RTS game possesses. Therefore, allowing 

FCBR to deal with the vast space of actions presented in an RTS game whilst incorporating human 

knowledge in the reasoning process. Furthermore, the tactical agent proposed in this method is based 

on a CBR approach and uses a fuzzy representation of cases, allowing the AI to deal with abstract and 

incomplete information. This abstract representation of the game state closely mimics human thinking 
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as human players tend to think in an approximate form, rather than exact. So fuzzy theory deals with 

this kind of reasoning (Cadena, Garrido, 2011). This human like thinking could potentially result in an 

AI opponent that feels more realistic and challenging to play against. 

Rather than using a goal-based system, Cadena and Garrido used a case library formulated of cases 

composed of features that represent the state of the game itself as well as the actions executed 

within that state. To construct the case base, a replay of an experienced human player playing 

against the built in StarCraft AI is saved in a format that enables replay of the game. This replay is 

analysed by the Brood War Application Programming Interface or BWAPI (Kovarex, 2011), then, the 

features that represent the state of the game and strategic actions are added to the case base. 

The results of this method when pitting this AI against the default StarCraft AI are promising. The 

tests conducted being split up into 3 sections: one using the same start positions as gathered in the 

replay the case base is based on; the second using the selected position for the bot, but a random 

position for the default StarCraft AI; the third having both bots start in random positions. Each test 

having 100 matches played. Across all tests the average win rate was 60% with the best win rate 

being the random start positions for both. This shows that the bot is already a more challenging 

opponent than the default StarCraft AI. If more than one replay, showing various expert human 

player tactics were used to construct the case base, this approach could yield a very challenging AI 

opponent for human players to face. Especially since this method results in an AI that has more 

human like thought processes. 
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5.0 Research Methodologies  

To clearly understand how to create challenging AI opponents for players in the RTS game genre, an 

experiment will be conducted to test each of the methods discussed in the literature review 

independently of each other. The results of each method will be compared to determine which of the 

methods are beneficial to implement when attempting to create a challenging AI opponent.  

Before any testing can be conducted, an RTS game is required as a testbed to input these methods 

into. Many platforms were considered, such as StarCraft and the ORTS, since both are prolifically used 

in the RTS AI research field (Robertson, Watson, 2014). However, the aim of this study is to 

determine the best methods for creating more challenging AI in any sort of RTS game, and since the 

majority of these have been designed around the aforementioned titles, it would draw more 

interesting results to test them in a completely new RTS game prototype. It would also test to see if 

the methods used by academics can be easily plugged into existing AI architecture of new RTS 

games. 

5.1 RTS Development 

To develop a RTS prototype to test these methods, a few factors will need to be considered such as 

the game engine to develop in; the programming language to utilise; the game mechanics of the 

RTS; the setting of the game and lastly the unit types. 

The engine that was chosen for this project was Unreal Engine 5 (Epic Games, 2022), specifically 

version 5.4.4. The reason this engine was chosen was due to the extensive built in systems that 

would streamline the development of the project, allowing more time for the development of the AI 

itself. Features like the Navigation volumes would allow easy development of the unit movement, and 

the built-in blackboard and behaviour tree systems would speed up AI development. As for the 

programming language, despite Unreal Engine featuring the Blueprint scripting language, C++ was 

opted for as it allows more direct control over components, something that blueprint lacks. C++ also 

features the advantage of manual memory allocation, resulting in faster performance times in 

compiling and running the code. This faster performance will be beneficial due to the high volume of 

processes an RTS AI will need to run. 

As for the mechanics and gameplay idea of the prototype this was heavily inspired by the space 

skirmish mode in the game Star Wars: Empire at War (Petroglyph Games, 2006). In the skirmish 

mode two factions on opposite ends of a space map start with a space station and handful of basic 

units. Players can only build units and upgrade technology level from this space station and if it is 

destroyed, they will lose. Resources are gained per second and credit mines can be captured around 

the map to increase the income per second. The prototype will use the same mechanics and design 

principles as it ensures matches played are short and fast paced. The one major difference will be 

rather than set in space, this prototype will have a naval theme and be set in an ocean. Lastly there 

will be five unit types for both the AI and players to choose from, each based on a class of naval 

ships. This variety ensures some level of strategy is used as each unit will have different strengths 

and weaknesses. 

After the prototype has been developed, the enemy faction will require AI functionality so it can be 

controlled and fight the player – as is the case in every real-time strategy game. This AI will be 

developed utilising Unreal Engine’s Behaviour Tree system, so it can manage the decisions it will need 

to make. The structure of the AI will be based upon a combined approach of the dark reign model 

(Davis, 1999) and the approach laid out in section 4.2.1, which involves breaking down the AI into 

different managers with each one being responsible for a specific faction task (Scott, 2002). These 

approaches seem to be used heavily by the games industry, so it is the logical choice to base this RTS 

AI around those principles. 
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When the AI has been completed, the next stage will be to create five identical levels, the difference 

between these levels will be slight changes within the code of the AI itself. Most methods discussed 

within the literature review are sets of equations swapped out in key points within the decision-

making process of the AI. This means these methods can be injected into the AI’s code, so that each 

level features a functionally different AI. Two levels will have no changes to the AI code, this being 

the first one to use as a baseline for the results, the other level will have changes made to the income 

of the enemy faction to test the industry method of cheating resources to make the AI more 

challenging (Johnson, 2008). 

5.2 Data Types 

For this study, since participants will be attempting to defeat AI opponents in a one versus one 

match. The data required from each participant will, state whether they beat the AI opponent, rate 

the bot’s difficulty, and detail the strategy used. As a result, a mixed methods approach will be 

required since these questions will result in both qualitative and quantitative data. The use of 

quantitative data will allow the data to be clearer and more presentable; as well as give clear metrics 

on the participant’s opinion on how challenging, on a linear scale, they thought the AI they played 

against was. 

Raw numerical data will be useful for this study; however, the use of qualitative data will also be 

valuable, as it provides reasoning for their numerical ratings of each AI opponent they will face. This 

will provide a clearer image of what happened in each participant’s battle against an AI opponent 

which will in turn allow a more informed analysis of the results. 

5.3 Data Collection 

For the data collection of this experiment, participants will be asked to play five levels, each level is 

the same map, it just features a different type of AI. The differences between the bots in each level 

will be abstracted from the participant and will just be labelled level 1-5. This is done to prevent bias, 

as knowing a bot is cheating may affect the players determination to beat it, therefore skewing the 

results. Once a player has completed a level, they will then be asked to fill in a questionnaire form 

corresponding to the level they have just played. Each questionnaire is identical, apart from the level 

1 questionnaire which asks participants what skill level they have with RTS games. The questionnaires 

are separated like this to keep each form more condensed and easier to read. The questionnaire can 

be seen in Appendix 1. For the questions asking participants to rate the difficulty, adaptability or their 

skill, a 10-point version of the Likert Scale (Likert, 1932) is used. The Likert scale is a set of 

statements offered for a real or hypothetical situation that participants are asked to show their level 

of agreement with on a metric scale (Joshi et al, 2015). This version has ten options with 1 always 

being the lowest and 10 always being the highest rating. This scale was chosen over a traditional 5-

point Likert scale as adjacent options are less radically different from each other. This larger spectrum 

of choices offers more independence to a participant to pick the option that they feel is correct rather, 

than an option that partially represents their current opinion (Joshi et al, 2015). 

Data will also be collected in the form of metrics gathered throughout the course of the match. The 

data that will be tracked is how many ships of each class both the player, and AI opponent lost as 

well as the match duration. This data will be saved at the end of each match in a .csv file. One file will 

be created per level and the name of the file corresponds to the level played. These files will be 

collected and stored with the participant data for analysis. 
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5.4 Data Analysis 

The data gathered from the questionnaires will be analysed in two ways. For the quantitative data, 

since it will all be numerical or Boolean in nature, it will be plotted into tables and graphs for the 

purpose of readability. For the questions that ask for a participant to rate something, averages will be 

calculated, and these average values will be utilised to draw overall conclusions on how challenging a 

bot was. The higher the average result, the more difficult that bot was perceived to be. 

For the qualitative data, this will be analysed using a technique called thematic analysis, this is a 

research method used to identify and interpret patterns or themes in a data set by selecting out 

keywords within a participant’s response and assigning them into codes. Using these codes, themes 

can be built. Participant’s responses are then placed in a theme and the proportion of responses that 

fit into each theme can be analysed in a quantitative manner (Naeem et al, 2023). This technique will 

be done to create themes based on the strategy each player used and see the proportion of people 

who used each strategy on each opponent. This will help determine if a certain AI was weak/stronger 

against a particular strategy a participant may have used. 

For the metrics gathered in each map on ship losses and match time, this will be used to gauge an 

idea of how challenging it was for a person in a particular match, and to see if this data matches the 

responses in the questionnaire. To gauge how challenging a particular match was the ship losses and 

match duration will be reviewed. For example, a match which went on for a long period of time and 

had both the AI and participant both lose a substantial number of ships, regardless of the victor, will 

show it was a challenging experience. On the other hand, a short match time with minimal losses on 

the player side with a player victory will mean the AI was too easy. Alternatively, if the same results 

are seen but the AI won, it was either too difficult for the participant and they got easily defeated, or 

the participant did not try to win. 

5.5 Limitations 

There are a few potential limitations to consider with this study. The main one being participants’ 

experience level with the RTS genre of games. Although most participants will likely be games design 

and technology students, it does not mean that everyone will have experience playing RTS games 

before. Therefore, those with little experience are likely to find even the base AI difficult to beat. This 

could skew the results of the study, as even the basic AI could have a high loss rate.  

Another limitation is the time taken for one participant to complete the study. RTS games are not 

known for their short game time, so participants may feel fatigue after playing a few of the levels. As 

a result, a surrender button will be unlocked after five minutes of game time has passed, so if the 

participant is not confident, they will be able to beat that AI they can forfeit the game. This feature, 

however, may encourage a higher loss rate with participants opting to give up even though the tide of 

the game may be about to turn in their favour. 

One final limitation to consider is the number of methods being used in this study. Only 3 methods 

utilised by the industry and academia are being used, this being cheating, the Lanchester Model and 

Dynamic Difficulty scaling. There are many more methods that could be used in this study to gather a 

broader array of data to analyse the level of challenge each one brings to the player; however, due to 

time constraints and the previously discussed limitation of how long one run of the experiment may 

take, it is a limitation that cannot be changed. 
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6.0 Results and Findings 

The study was conducted, in which 10 participants were asked to play through all five of the different 

level each containing a functionally different AI. They were asked to play through them in level order, 

complete a questionnaire after completing each match. The nature of the AI they were playing 

against was abstracted from them. 

6.1 Participant skill level 

The first set of results details the participants skill level. This was the first question asked after a 

participant completed the first match. Asking participants to rate their skill level with RTS games was 

to compare the win rates of both skilled and unskilled participants. As seen in figure 5, there was a 

fair distribution of skill levels amongst the participants, with 3 participants who were well versed in 

RTS games rating themselves a 7 or above. 3 moderately skilled participants rating themselves a 4-6 

and the largest proportion of participants were low skilled rating themselves 3 or below. This 

distribution allowed for a good opportunity to see how participants of different skill levels faired 

against each bot. 

 

Figure 5: Chart showing the skill level of participants who took part in this study 

6.2 Match statistics and questionnaire responses 

Figure 6 shows the results gathered from a combination of questionnaire responses and save data 

collected at the end of each match. The save data included how many of each ship type was lost by 

both player and AI as well as the match duration. The ship class data is abstracted; however, the full 

stats breakdown is viewable in the appendix of this paper. Each data point is also a combined average 

of the results gathered by each of the 10 participants. 

The first set of results in figure 6 is from the baseline AI. This AI provided a baseline for players to 

see how they handled the AI that was created without any modifications. It featured the longest 

average match duration of 791.3 seconds or 13.18 minutes. It also featured the result for both the 

highest average player and AI casualties.  

The second set of results is from the AI with a constant 1.5x income multiplier. This had the longest 

match duration and highest player casualties outside the baseline. Despite having the lowest win rate 
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at 50% however, it was also rated the joint lowest in the difficulty category with an average score of 

5.2.  

The third set of results is from the AI that used the Lanchester combat prediction model as mentioned 

in section 4.5.2 by (Stanescu et al, 2017). This algorithm will decide whether to attack/retreat based 

on unit strength as opposed to who has the most units by raw numbers. Interestingly this features 

the highest AI casualty rate outside the baseline but also the lowest player casualty rate. As well as 

this it shares the joint lowest difficulty and the lowest match time. These are unexpected results 

considering the combat prediction algorithm proposed by (Stanescu et al, 2017) yielded better results 

than default StarCraft AI. However, that paper did not test this model against human participants. 

The fourth set of results are from the AI using dynamic difficulty scaling (DDS). This AI was given the 

highest adaptability rating of all 5 with a score of 6.4/10. The win rate is also the same as the 

Lanchester model, however it features a higher difficulty rating. 

The last set of results are from the AI that used both DDS and the Lanchester model. The results in 

this data set are most interesting as this AI not only has the highest win rate at 80%, but also the 

highest difficulty rating and the second highest adaptability score of 5.8 and 5.9 out of 10 

respectively. Furthermore, this AI also featured the second highest match duration, player and AI 

casualty rates outside the baseline. 

Average stats per match Base AI 
AI  1.5x Income 

Multiplier 
Lanchester 

Model AI DDS AI 
DDS + 

Lanchester AI 
Total Player Casualties 18.6 15.9 10.4 11.3 13 

Total AI Casualties 29.9 21.6 23.5 22 22.2 
            

Match Duration (seconds) 791.3 670.5 626 639.2 666.7 
            

Difficulty Rating 5.3 5.2 5.2 5.5 5.8 
Adaptability Rating 4.9 5.9 5.7 6.4 5.9 

            
Win rate 60% 50% 70% 70% 80% 

Figure 6: Table of results of average match statistics against each AI bot. 

6.3 Thematic analysis of participant strategies 

To quantify the data from the qualitative data obtained in this study, thematic analysis was 

undertaken to determine the proportion of participants who utilised specific strategies within each 

match. There are three strategies that are commonly used by RTS players, these economy building, 

turtling and rushing (Bycer, 2025).These were 3 of the 5 chosen themes used in this analysis. The 

other two were added based on codes, as during the coding stage of the analysis, a fair proportion of 

participants opted to use mid and late game pushes when they had stronger ships. The results table 

in figure 7 is a breakdown of how many participants used a specific strategy based on the codes in 

their responses. The total of each column is more than 10 however, as participants seem to use 

multiple strategies throughout the course of a game. 

In figure 7, the first column shows the strategies used against the baseline AI. Here most participants 

built up their economy before a late game push once they had a greater resource output than the AI. 

It is also the bot that had the most uses of a late game push against it, which correlates with the long 

average match duration seen in figure 6. 
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The second column shows the strategies used against the cheating AI. Economy building is the main 

strategy utilised here since it is the only way to overcome the AI’s 1.5x income multiplier. However, 

the number of late game pushes has dropped which correlates to the lower win rate this bot has 

against participants. So, it is likely more would have used this option if they did not lose to the AI In 

the early game. Turtling is also more prevalent with 2 participants using this strategy as opposed to 1 

in the baseline, again likely due to them trying to defend against an early AI rush. Other than those 

changes the statistics stay the same as the baseline. 

The third column represents the strategies used against the AI using the Lanchester combat 

prediction model. This sees the greatest number of participants using the economy building strategy 

with 7/10 utilising it. It also sees the lowest number of participants using turtling as no one use this 

strategy against this AI. Instead, a pattern of aggressiveness is seen as participants opted to rush or 

push in the mid to late game.  

The fourth column shows strategies used against the AI using DDS. This shows the most even 

distribution of strategies out of all the matches, with 4 participants opting to economy build and push 

in the late game. But it also sees the greatest use of turtling with 3 participants using it. It also sees 

the joint highest usage of mid-game pushes with 3 participants using this strategy. This mix of 

strategies is likely due to the DDS giving a better ebb and flow of power between the participant and 

the AI. A point reinforced by one participant who stated in the feedback for the AI question: “They 

came at me then I fended them off then they came at me again and I fended them off till I could 

overpower them.” Showing this bot forced players to use a variety of different strategies throughout 

the course of a match. 

The last column shows the strategies used against the final AI that participants faced which was the 

AI using both DDS and the Lanchester model. Although there is a fair distribution of strategies, like 

the pure DDS AI. Participants leaned less towards turtling and more towards economy building and 

mid to late games pushes, which mirrors the results from the pure Lanchester model AI. 

Figure 7: Thematic analysis of the strategies used by participants 
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7.0 Discussion and Analysis 

7.1 Analysis of the AI developed 

The results of this investigation provide an interesting insight into which methods used within the five 

AI systems created a challenging match for participants, and which ones did not. The first method 

used was allowing the AI to cheat by giving them a 1.5x income multiplier throughout the entire 

game. As previously discussed, the 50%-win rate shows that participants found this to be a difficult 

level with one stating in the question asking for feedback around the AI: “I would increase then 

development time for enemy AI ships to take longer, to give the player a better chance to strategise.” 

Furthermore, the cheating of the AI appeared to be obvious to participants with another stating “I 

think it could be more balanced as it felt as though they had a lot more ships than me.” As stated by 

(Davis, 1999) if the cheating is obvious, the game is not fun. Therefore, showing that allowing this AI 

to have such a severe economic advantage over the player did not create a challenging opponent for 

them, moreover a combatant they found difficult and not fun to play against which does not align 

with the aim of this study. As a result, showing the use of cheating is not necessarily a viable strategy 

to create challenging AI opponents in RTS games. 

Following on, the next method that was utilised was the Lanchester model of combat prediction within 

RTS games proposed by (Stanescu et al, 2017). This AI saw both the lowest player casualty rate, 

highest AI casualty rate and lowest average match stats. On top of this it was also rated the lowest 

difficulty and the lowest adaptability outside of the baseline AI. Therefore, having the worst statistics 

out of all the other AI that was tested, conveys it did not do an effective job at creating a challenging 

match for the participants. This is in direct contrast to the study conducted by (Stanescu et al, 2017), 

which showed a modified StarCraft AI bot utilising this algorithm had a 60.8% average win rate 

against tournament winning StarCraft AI. One factor for this might be because this paper never tested 

against human opponents, however the more likely factor is that the paper uses logistic regression to 

learn unit strength values through simulated matches. This increased the win rate for the AI by 8.9% 

over the AI that did not use logistic regression. As a result, implementing this may have made the AI 

more challenging for participants, as the results show that it seemed the easiest and quickest to beat 

providing little challenge. This is supported by feedback from participants, for example one participant 

stated: “It felt like they were easier than level 2, but I did notice that they seemed to ‘poke’ me more, 

in that they sent out a feeler ship (a cheap one) and then quickly retreated.” 

The next AI to analyse was the one that used dynamic difficulty scaling (DDS). Based on pure data 

and feedback given by participants, it appeared to be the AI that performed the second best in 

providing a challenging experience for players, especially as one participant stated, "that was the 

most engaging the game had been." The longer average match time and the higher average 

casualties on both the participant and AI side suggests matches were more intense and no side was 

favoured. Furthermore, looking at the strategies used in figure 7, a combination of all types of 

strategies were used in high proportion, indicating participants felt the need to change plans based on 

the behaviour of the AI. This also seems to support the study by (Hagelbäck, Johansson, 2009) as the 

AI utilises the same adaptive difficulty equation with the values from the bot which performed the 

best in their respective study. This combination of results seeming to indicate that DDS is an effective 

strategy for creating challenging AI opponents, as although the win rate for the participant is 70%, 

the match data indicates that no match was easy, and participants were challenged throughout the 

course of the entire match. Further supported by feedback from one participant who stated: “They 

came at me then I fended them off then they came at me again and I fended them off till I could 

overpower them.” This type of match fitting with Davis’s (Davis, 1999) idea of a challenging opponent 

being one that threatens the player but, in the end, making them feel like they heroically overcame a 

superior enemy. 
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The final AI was a combination of both the Lanchester model as well as utilising DDS. This 

combination was used to see if combining methods would create an even more challenging AI for the 

player than using these methods alone. Judging purely on the data, this approach seemed to have 

worked as it features some favourable results. The highest win rate and second longest match times 

outside the baseline indicate that matches were long but allowed the player to win in the end. This is 

further supported by the fact that it received the highest difficulty rating, and second highest 

adaptability. This should not correlate with the high win rate unless the match was challenging for the 

participant, and they felt like they overcame a superior enemy. Furthermore, it featured a greater 

usage of strategies with half the players utilising economy building, likely to overcome the AI creating 

large forces after losing a push. This result is further supported by the feedback given with one 

participant stating: “I feel like this area was well balanced and great for a final level I have no other 

suggestions” and another stating: “The AI provided great challenge against my strategy and pushed 

into different playstyles like sending different units to the credit mines.” These results are surprising 

considering that the Lanchester model alone provided little challenge for players. Therefore, 

combining it with DDS, which was the best performing until this match, managed to improve the level 

of challenge overall. It is even more surprising as, players tend to get better at a game, the more 

they play it. So, leaving this level to last and for it to still be the most challenging for players supports 

the fact that both these methods when used in conjunction with each other, create a challenging 

opponent for the player. 

7.2 Limitations of the investigation 

Despite the results seeming to be favourable towards the AI that was deemed challenging by other 

academics, there are some limitations to be discussed regarding the investigation. Including issues 

with the methodology, design features of the RTS framework and the conditions in which the results 

were obtained. 

Regarding the adequacy of the methodology, for the most part the testing processes and data 

gathering methods appeared to be conducted well. The two main issues however are the sample size 

of participants and the bias around the result analysis. With the sample size, since only 10 

participants were asked to take part in the study, it is not representative of the entire population. 

Therefore, there is a small chance that the results would be statistically significant. Furthermore only 

30% of participants were somewhat skilled in playing RTS games, as a result although lower skilled 

players found it more of a challenge to play against the various AI. It may then mean that applying 

these methods to games played by hardcore RTS players would not work, since it would not be a 

challenge for them. On top of this asking participants to rate their own skill level in RTS games will 

skew the results with bias, as some players may rate themselves a higher or lower skill level than they 

actually are, meaning the results are not representative of their true skill level. For example, the 

participant who rated themselves a 10 on the question regarding their skill level, only ended up 

winning two out of the five matches, which is the same win rate as someone who only gave 

themselves a rating of 2. 

In terms of bias over the result analysis, this refers to the thematic analysis conducted to quantify the 

data from the question asking what strategy participants used. As the coding and theming part of 

thematic analysis is heavily reliant on the reader’s interpretation of a participant’s response, it means 

if another party conducted the same analysis of the results, they could end up with different results 

entirely. Resulting in this data having some bias. 
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Another limitation of this investigation is regarding the design of the RTS framework used. If this test 

was conducted using an existing and polished piece of RTS software, such as StarCraft or the ORTS, 

there would be a minimal chance of bugs within the game affecting overall results. However, since 

the decision was made to construct a completely new RTS for the purpose of testing, it meant that 

this was more susceptible to bugs, which could potentially affect the data collected. Unfortunately, 

this did happen within the investigation as 3 participants noted in the feedback question, that, the AI 

moved to capture their credit mines but could not destroy them. This resulted in times where a few 

ships clustered the mines before getting ordered to attack the participant’s shipyard. It is very likely 

had this bug not been present the results may have looked drastically different, potentially a lower 

win rate and greater difficulty ratings across all AI’s.  

The last limitation is the conditions in which the results were obtained. As the participants were 

university students, the majority of which were on the same courses, so since the study took place 

over the span of 3 days, participants could have conferred with each other about the study. For 

example, participants who had already taken part could have passed on strategies to defeat each AI 

to participants who were yet to take part in the study. Resulting in potentially skewed results from 

some participants as they had insight into how each AI operated. 
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8.0 Conclusion 

This paper set to investigate what techniques and development processes could be used to develop 

more challenging AI opponents for RTS games. During the course of this investigation, extensive 

research was conducted in both the how to structure an AI, but also what algorithms and techniques 

could be used during the decision-making processes to enhance the difficulty of an AI without 

resorting to allowing the AI to cheat. 

RQ1 was to discover what deemed an AI as challenging. The result turned out to be one that 

threatened the player throughout the course of a match and may beat them a couple of times, 

however in the end the player will manage to overcome the opponent and feal a great sense of 

accomplishment doing so. It should not be an AI that is impossible to beat as this will make players 

give up. RQ2 was to determine the optimal design philosophies for developing an RTS AI. The answer 

to this is to break down the different tasks an AI must perform into different managers, so each 

manager focuses on one task, but also allowing these managers to communicate with each other. 

This makes it a more manageable task to code an AI, as other functionality can be temporarily 

abstracted while developing a single manager, then at the end they can all be combined at the end to 

create a fully functional AI. RQ3 asked what the optimal algorithms used for combat prediction are. 

The research all pointed towards using a variant of the original Lanchester Laws of warfare, with the 

one used in this study being a specific adaptation of the law of modern warfare to be used in the 

context of an RTS game. Further steps could have been taken to incorporate logistic regression to 

learn strength values of units rather than creating them through data on the unit health and cost, 

however this would have taken the project out of the projected timespan, so the decision was made 

to cut this aspect. Despite the fact the projected results might have been better. 

The aim of this study was to determine the techniques that can be used to develop more challenging 

AI opponents. The results of the study concluded that the AI used in level 4 and 5 were perceived by 

participants in qualitative results as the most challenging opponents, which is a fact the quantitative 

data reinforces. The AI in level 4 using dynamic difficulty scaling, whilst the AI in level 5 used a 

combination of dynamic difficulty scaling and the Lanchester model for combat prediction. Both of 

these also gained better verbal feedback in the questionnaire on how challenging it was compared to 

the AI that outright cheated due to an economic advantage. A fact that was also supported by the 

quantitative data collected. These results supporting the fact that, there are methods that work better 

than cheating to create a more challenging AI opponent for players to face. 

Although the point this paper set out to prove was achieved, the fact that there was a bug in the RTS 

framework’s code that prevented the AI from taking the participant’s credit mines. Although this did 

not occur all the time, the fact that it was present means the results of this study are different from 

one where the bug did not exist. This is because participants would have less income when their 

mines get destroyed and could have made them more likely to lose because of this. Furthermore, the 

limited sample size of this study brings the question of if 100 participants were asked instead of 10, 

would the current trend in the results be the same, as it is hard to determine if the chosen 

participants were in fact representative of the entire population. Despite these shortcomings however, 

the study can still be deemed a success as these issues with the framework and sample size do not 

necessarily invalidate the results. Especially as even in fully polished and released games, players will 

find ways to exploit the AI and discover bugs the developers were not aware of, so it could be argued 

that the test is even more realistic since it allowed participants to attempt to exploit the AI, as they 

could in a pre-existing title. 
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9.0 Recommendations 

Future work in this study could include creating AI opponents using the other methods discussed in 

the literature review. For instance, utilising Monte-Carlo tree search as opposed to basic tree 

searching algorithms, or the use of fuzzy case-based reasoning to help and AI learn, and problem 

solve based on previous experience during the current match. Another direction could be to utilise 

data-driven design, like in the game Stellaris. This allows designers to weight specific choices based 

on events within the game. Alternatively, the weight of choices could be tied to a dynamic difficulty 

scaled system that made the AI more likely to choose aggressive strategies when pressed into a 

corner by the player. 

The approach that was taken with dynamic difficulty scaling in this study was to give the AI a boost or 

reduction in the income multiplier depending on the difficulty score which was calculated every 10 

seconds. This equation could be adjusted to make the AI receive more severe bonuses and handicaps 

depending on the difficulty score to see if the results would be better than the ones gathered in this 

study. 

If this study were to be conducted again however, some changes would need to be made for a more 

conclusive set of results to be obtained. The main change would be to spend more time on the 

development of the framework to ensure all core mechanics are bug free, therefore no bugs could 

potentially interfere with the results like they did in this study. Another change to be done, if this 

study was conducted again, would be to ensure all participants take part at the same time but in 

different spaces, therefore reducing the risk of conferring. 

Furthermore, changes could be made in relation to the order that participants played the different 

levels. The current ordering was the basic AI, cheating, Lanchester, DDS then the DDS and 

Lanchester combination. Since all the levels and mechanics were the same and it was just the AI that 

changed, despite the difference in difficulty, participants would naturally improve their skill in the 

game as they progressed. So, performing the test again but getting participants to play the AI in 

reverse order to what was previously stated, could yield different results as they faced the proposed 

most challenging AI first and the basic AI last. Potentially flipping the results and getting more losses 

on the DDS and Lanchester model combination. In theory however, since the difficulty adjusts 

depending on the player’s relative power to the AI, the AI should adjust for the new player and the 

results could be very similar. 
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10.0 Appendices 

Appendix 10.1 Questionnaire form given to each participant 

 

Appendix 10.2 Raw data gathered from participants who fought the baseline AI 
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Appendix 10.3 Raw data gathered from participants who fought the cheating AI 

 

Appendix 10.4 Raw data gathered from participants who fought the Lanchester model AI 

 

Appendix 10.5 Raw data gathered from participants who fought the DDS AI 
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Appendix 10.6 Raw data gathered from participants who fought against the DDS + 

Lanchester Model AI 
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